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Dengue viruses and malaria protozoa are of increasing global
concern in public health. The diseases caused by these pathogens
often show regular seasonal patterns in incidence because of the
sensitivity of their mosquito vectors to climate. Between years in
endemic areas, however, there can be further significant variation
in case numbers for which public health systems are generally
unprepared. There is an acute need for reliable predictions of
within-year and between-year epidemic events. The prerequisite
for developing any system of early warning is a detailed under-
standing of the factors involved in epidemic genesis. In this report
we discuss the potential causes of the interepidemic periods in
dengue hemorrhagic fever in Bangkok and of Plasmodium falci-
parum malaria in a highland area of western Kenya. The alternative
causes are distinguished by a retrospective analysis of two unique
and contemporaneous 33-year time series of epidemiological and
associated meteorological data recorded at these two sites. We
conclude that intrinsic population dynamics offer the most parsi-
monious explanation for the observed interepidemic periods of
disease in these locations.

Dengue fever is caused by infection with dengue viruses of the
family Flaviviridae, transmitted principally by Aedes aegypti

mosquitoes in the tropical and subtropical regions of the world
(1, 2). There are four antigenically related but distinct dengue
virus serotypes, each causing strong homologous immunity but
short-lived cross-immunity to reinfection (3). Fifty to one hun-
dred million cases of dengue fever are estimated to occur
annually, along with several hundred thousand cases of the
life-threatening form of the disease, dengue hemorrhagic fever
(DHF) (4). The geographic range of dengue has expanded over
the last two decades, primarily because of the spread of its
principal vector, Aedes aegypti (5). Furthermore, dengue has
shown a dramatic increase in incidence within its range, with
many large urban centers becoming newly endemic for the
disease (6). Continued trends of rapid population growth, in-
creasing aggregation in urban centers, and ever larger volumes
of international travel, combined with a lack of effective vector
control, have encouraged rapid viral evolution (7) and collec-
tively augur an increasingly serious public health problem.

Plasmodium falciparum malaria parasites are transmitted
mainly by the Anopheles gambiae complex in rural Africa. In this
region alone P. falciparum infections are thought to result in
approximately 200 million clinical events and 1 million deaths
per annum, approximately 75% of which are children (8). In
addition, there is growing concern that patterns of malaria on the
African continent are changing, with increased risk for severe
complicated disease and mortality (9). Changes in environmen-
tal management, population migration patterns, focal break-
down in health service provision, rising drug resistance, and
global warming have all been suggested as contributing to these

changes (10–13). These themes again point to an increasing
problem for the global health agenda.

The mosquito vectors of dengue and malaria parasites are
extremely sensitive to climate. Meteorological conditions di-
rectly influence vector reproduction and mortality rates and
thereby control population distribution and abundance. More-
over, they indirectly affect epidemiologically significant factors
such as the blood feeding frequency of the vector and the
extrinsic incubation period of the pathogen (12, 14). These
effects often result in predictable annual cycling, or seasonality,
in mosquito-borne diseases (15). In addition to this seasonal
variation, however, there are also occasional large increases in
clinical burden, ‘‘epidemics,’’ that often overwhelm health care
services (2, 13). In endemic disease settings, periodic superan-
nual f luctuations in incidence have been observed in a variety of
vector-borne diseases (16–21).

Epidemics of dengue fever (22, 23) and historical and con-
temporary malaria epidemics (24–29) have also more recently
been associated with the El Niño phase of the Southern Oscil-
lation (ENSO). The Southern Oscillation is a periodic interan-
nual biphasic variation in sea-level pressure across the Pacific
Ocean that drives a complex global system of meteorological
perturbations (30, 31). The El Niño period is characterized by
high surface pressure over the western Pacific and low surface
pressure over the southeastern Pacific; the complementary
phase is termed La Niña. During El Niño, conditions are usually
said to be drier and hotter in Thailand and wetter in Kenya (32,
33), although recent evidence suggests that coupling of the
ENSO and climate around the Indian Ocean region is not as
strong as previously suggested (34). In addition to the claimed
links with dengue and malaria, the Southern Oscillation has also
been related to outbreaks of mosquito-borne Murray Valley
encephalitis in southeastern Australia (35, 36), bluetongue virus
in northern and eastern Australia (37), and Rift Valley fever in
Kenya (38).

In sharp contrast to the studies that have emphasized climatic
determinants of vector-borne disease epidemics, epidemiologi-
cal theory has modeled these periodic phenomena as resulting
from the dynamic interaction between host and parasitey
pathogen populations (39). In unforced Susceptible, Exposed,
Infectious, Recovered (SEIR) models of directly transmitted
diseases, incidence is predicted to exhibit damped oscillations
with an approximate interepidemic period (T):
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T > 2p@~D 1 D9!A#1/2 [1]

where D is the latent interval and D9 is the infectious interval of
the disease and A is the average age of first infection. In models
with demographic or environmental stochasticity, resonance
ensures that these oscillations are sustained, provided the
population is large enough for the pathogen to avoid extinc-
tion. Such interactions occur regardless of changes in the
abiotic environment, although many forcing mechanisms, in-
cluding seasonality, have been suggested to be able to maintain
these oscillations (40).

Recent extensions of this work allow for diseases, such as P.
falciparum malaria, that do not confer life-long immunity on first
infection and whose macro-epidemiology reflects a disease
spectrum of independently transmitted ‘‘strains’’ (41). Simple
dynamic models of negative strain interactions on the transmis-
sion dynamics of antigenically diverse pathogens, such as dengue
viruses and P. falciparum, demonstrate that sustained cyclical or
chaotic dynamics can result from moderate levels of strain
cross-immunity (42). These dynamics are determined by the
duration of infectiousness within the human host; short-period
cycles of a few years result from infectious intervals of a few days,

whereas long-period cycles of many years occur for diseases with
infectious durations approaching a month or longer. Models of
positive ‘‘strain’’ interactions such as antibody-dependent en-
hancement in dengue can also result in persistent cyclical and
chaotic behavior (43). In modeling a two-strain system, research-
ers have found stable interepidemic periods of 0–5 years across
a wide range of antibody-dependent enhancement. This work
has been further corroborated by analyses of age-stratified
seroprevalence data of dengue in Thailand, in which the force of
infection was found to vary over a 3- to 4-year period (44).

There are, therefore, two possible sets of causes of regular
between-year epidemic events, one extrinsic and associated with
ENSO-type climate phenomena, the other intrinsic and associ-
ated with host pathogen population dynamics. It is essential to
determine the etiology of interepidemic periods and the relative
importance of intrinsic and extrinsic influences, to develop
accurate early warning systems for these diseases. These factors
are distinguished here, using two unique epidemiological time
series: one a record of DHF in the Bangkok–Thonburi metro-
politan area (hereafter Bangkok) and the other a record of P.
falciparum malaria in the rural highlands of Kericho in western
Kenya.

Fig. 1. (a) A line graph showing the monthly incidence (cases per 100,000) of DHF in Bangkok from January 1966 to December 1998. The dashed line shows
a moving average of 61 months and the bold line, the stationary DHF incidence series (original value 2 moving average) on which SDA was performed. (b–d)
The spectral density plots of mean monthly temperature (b), total monthly rainfall (c), and total DHF incidence (d) for Bangkok are shown. A Tukey–Hamming
window of three points was applied to smooth the spectral density plots. Details of the variance structure from the periodograms (unsmoothed spectral density
plots of frequency) show that annual and short frequencies account for 31.5% of the total variance in the DHF time series and superannual frequencies account
for 68.5%. For the temperature and rainfall time series, the annualysuperannual variance split is 92.5:7.5 and 94.0:6.0, respectively.
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Total monthly admissions of patients with DHF were recorded
at various hospitals in the Bangkok area (13° 500 N, 100° 400 E)
from 1966 to 1998 inclusive. DHF cases throughout the obser-
vation period were based on clinical diagnoses (high fever,
plasma leakage, and hemoconcentration) defined formally later
by the World Health Organization (45). Subsequent serological
studies in Bangkok have shown such clinical diagnoses for DHF
to be highly specific (46, 47). It was not possible to determine
whether the DHF cases reported represent the total burden of
DHF in Bangkok or a proportion of the DHF cases were
acquired elsewhere. There is no reason to assume, however, that
these factors introduced significant biases during the observation
period; the DHF data presented therefore represent a reliable
sample of the disease in Bangkok. Furthermore, other poten-
tially complicating factors, such as intermittent control activities
(48) and increased affluence leading to increased screening of
households, have not stopped the increase in the incidence of
DHF in Bangkok during the observation period (49). Mean
monthly temperature (oC) and total monthly rainfall (mm) data
were measured for the same period at the Sukhumvit Road
meteorological station in central Bangkok. The DHF case data
were converted to incidence figures, using census information
provided for 1960, 1970, 1980, and 1990, a period during which

the population of Bangkok increased from approximately 2
million to 5 million.

The malaria data originate from the health care system
established by Brooke Bond Kenya Ltd. at its tea estates in
Kericho (0° 220 S, 35° 170 E), located in the Rift Valley highlands
of western Kenya (9). Monthly hospital admissions of P. falci-
parum malaria cases, confirmed through microscopy, were sys-
tematically recorded in ward registers for 1966–1998 inclusive.
Case numbers in Kericho were treated as incidence figures,
because the population eligible for health care remained ap-
proximately 100,000 throughout the recording period. Climate
data were also available from 1966 to 1998 as mean monthly
temperature (oC) and monthly rainfall totals (mm) recorded at
the center of the estates by the Tea Research Foundation. No
preventative chemoprophylaxis, house spraying with residual
insecticides, or bed net distribution has been implemented since
the late 1950s (50). Patients whose ethnic group did not originate
in the highlands were excluded from the analyses, as they were
frequently found to acquire malaria while on leave. The Multi-
variate El Niño Southern Oscillation Index (MENSOI) (51, 52)
(available at http:yywww.cdc.noaa.govy;kewyMEIy) was also
obtained for the 1966–1998 period. This index uses six variables
over the tropical Pacific to parameterize the Southern Oscilla-
tion: sea-level pressure, zonal and meridional components of the

Fig. 2. (a) A line graph showing the monthly incidence (cases per 100,000) of P. falciparum malaria incidence (cases per 100,000) in Kericho from January 1966
to December 1998. (b–d) The SDA of mean monthly temperature (b), total monthly rainfall (c), and total malaria incidence (d) for Kericho are shown. As for Fig.
1 b–d, except that annual and shorter frequencies account for 69.8% of the total variance in the malaria time series and superannual frequencies account for
30.2%. For the temperature and rainfall time series the annualysuperannual variance split is 82.1:17.9 and 89.1:10.9, respectively.
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surface wind, sea surface temperature, surface air temperature,
and total cloudiness fraction of the sky. The MENSOI index is
the unrotated first principal component of the combined fields
standardized by season and a 1950–1993 reference period (51).
Positive values represent El Niño and negative values represent
La Niña.

The time-series technique of spectral density analysis (SDA)
(53) was then used to investigate periodicity in both the
epidemiological and meteorological data, after insights gained
from its application to directly transmitted diseases (54, 55).
The SDA was implemented with the TRENDS 6.1 module of the
Statistics Package for the Social Sciences (SPSS, Chicago). The
monthly epidemiological and meteorological time series for
Bangkok and Kericho, as well as the MENSOI data, were first
made stationary (detrended) by using a 61-point moving
average. This approximately 5-year moving average was used
because cycles of any longer duration would not be detected in
a 32-year time series. Moving averages of 3–141 months were
applied and the SDA was repeated, to check that the detrend-
ing did not inf luence the results. SDA partitions the total
variance of a series into orthogonal sinusoidal components at
different frequencies, and the squared amplitudes of these
frequencies represent their contribution to the total variance
of the data set. Spectral density plots of these squared ampli-
tudes are smoothed and plotted either against frequency (in
which case the areas under different segments of the curve
represent the total contribution of those frequencies to the
total variance) or against period, which generally makes
interpretation easier. The latter are shown for the present data
sets in Figs. 1 b–d, 2 b–d, and 3b.

The SDA for both temperature (Fig. 1b) and rainfall (Fig.
1c) in Bangkok revealed well-defined peaks at 12 months,
which accounted for over 90% of the series variance and
illustrated the intense annual seasonality of climate in the
region. The DHF incidence data also showed annual variation
(frequencies of up to 1 year accounted for '30% of series
variance), but the majority of change in case numbers ('70%
of series variance) was explained by superannual periods
centered around a 3-year periodicity (Fig. 1d). In Kericho, the
SDA also showed strong annual variation in the temperature
(Fig. 2b) and rainfall (Fig. 2c) data, with 80% and 90% of series
variance, respectively, explained by periods of up to 12 months.
The malaria incidence data show both annual (70%) and

superannual (30%) variation, again with a period of approx-
imately 3 years. In addition to an annual variation, therefore,
both diseases have an approximately 3-year interepidemic
period that was not found in the contemporaneous climate
data. It is interesting to note that despite invalidating the
central assumption of life-long immunity on first infection, Eq.
1 predicts an interepidemic period of 35 months for DHF [D 5
5 days, D9 5 0.2 month, A 5 84 months (56)] and 34 months
for P. falciparum malaria [D 5 9–10 days, D9 5 9.5 months,
A 5 3.5 months (57)], which are very close to those resolved
by the SDA.

The SDA of the MENSOI (Fig. 3b) for the 1966–1998 period
shows peaks of approximately 4-year periodicity. The 3-year
period cycle in these data are significantly less pronounced than
the longer period cycles. Although cyclical variations are evident
in the MENSOI, these clearly do not substantially affect rainfall
and temperature in Bangkok or Kericho and thus can exert no
‘‘teleconnection’’ with disease incidence. The lack of a strong
superannual periodicity in the climate data and the poor rela-
tionship between climate at Bangkok and Kericho and ENSO are
not consistent with the hypothesis that interepidemic periods are
determined by climate, at least for these mosquito-borne dis-
eases at these locations. We conclude that intrinsic population
dynamic processes offer the most parsimonious explanation for
the interepidemic periods of DHF incidence in Bangkok and
clinical P. falciparum malaria cases in Kericho. We further assert
that epidemiological theory offers a more plausible platform
than epidemiological teleconnections on which to build models
for epidemic prediction. Combining within-year extrinsic and
between-year intrinsic determinants of mosquito-borne disease
incidence for epidemic prediction should be the focus of future
research.
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Fig. 3. (a) A line graph showing the monthly MENSOI from January 1966 to December 1998. (b) SDA plot of the MENSOI. As for Fig. 1 b–d, except that details
of the variance structure from the periodogram show that annual and shorter frequencies account for 4.5% of the total variance in the MENSOI time series and
superannual frequencies account for 95.5%.
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